Quantization Operators¶
- torch.ops.fbgemm.FloatOrHalfToFusedNBitRowwiseQuantizedSBHalf(input, bit_rate) Tensor ¶
Convert FP32/16 to INT8/4/2 using rowwise quantization.
- Parameters:
input (Tensor) – An input tensor. Must be either FP32 (torch.float) or FP16 (torch.half) and must be 2 dimensions.
bit_rate (int) – Quantized bit rate (2 for INT2, 4 for INT4, or 8 for INT8)
- Returns:
Quantized output (Tensor). Data type is torch.uint8 (byte type)
Example:
>>> # Randomize input >>> input = torch.randn(2, 4, dtype=torch.float32, device="cuda") >>> print(input) tensor([[ 0.8247, 0.0031, -1.0068, -1.2081], [ 0.5427, 1.5772, 1.0291, -0.7626]], device='cuda:0') >>> # Quantize >>> output = torch.ops.fbgemm.FloatOrHalfToFusedNBitRowwiseQuantizedSBHalf(input, bit_rate=4) >>> print(output) tensor([[159, 1, 86, 48, 213, 188], [248, 11, 254, 48, 26, 186]], device='cuda:0', dtype=torch.uint8)