• Docs >
  • Pooled Embedding Modules
Shortcuts

Pooled Embedding Modules

class fbgemm_gpu.permute_pooled_embedding_modules.PermutePooledEmbeddings(embs_dims: List[int], permute: List[int], device: device | None = None)[source]

A module for permuting embedding outputs along the feature dimension

An embedding output tensor contains the embedding outputs for all features in a batch. It is represented in a 2D format, where the rows are the batch size dimension and the columns are the feature * embedding dimension. Permuting along the feature dimension is essentially permuting along the second dimension (dim 1).

Example:

>>> import torch
>>> import fbgemm_gpu
>>> from fbgemm_gpu.permute_pooled_embedding_modules import PermutePooledEmbeddings
>>>
>>> # Suppose batch size = 3 and there are 3 features
>>> batch_size = 3
>>>
>>> # Embedding dimensions for each feature
>>> embs_dims = torch.tensor([4, 4, 8], dtype=torch.int64, device="cuda")
>>>
>>> # Permute list, i.e., move feature 2 to position 0, move feature 0
>>> # to position 1, so on
>>> permute = [2, 0, 1]
>>>
>>> # Instantiate the module
>>> perm = PermutePooledEmbeddings(embs_dims, permute)
>>>
>>> # Generate an example input
>>> pooled_embs = torch.arange(
>>>     embs_dims.sum().item() * batch_size,
>>>     dtype=torch.float32, device="cuda"
>>> ).reshape(batch_size, -1)
>>> print(pooled_embs)
>>>
tensor([[ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11., 12., 13.,
         14., 15.],
        [16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29.,
         30., 31.],
        [32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45.,
         46., 47.]], device='cuda:0')
>>>
>>> # Invoke
>>> perm(pooled_embs)
>>>
tensor([[ 8.,  9., 10., 11., 12., 13., 14., 15.,  0.,  1.,  2.,  3.,  4.,  5.,
          6.,  7.],
        [24., 25., 26., 27., 28., 29., 30., 31., 16., 17., 18., 19., 20., 21.,
         22., 23.],
        [40., 41., 42., 43., 44., 45., 46., 47., 32., 33., 34., 35., 36., 37.,
         38., 39.]], device='cuda:0')
Parameters:
  • embs_dims (List[int]) – A list of embedding dimensions for all features. Length = the number of features

  • permute (List[int]) – A list that describes how each feature is permuted. permute[i] is to permute feature permute[i] to position i.

  • device (Optional[torch.device] = None) – The device to run this module on

__call__(pooled_embs: Tensor) Tensor[source]

Performs pooled embedding output permutation along the feature dimension

Parameters:

pooled_embs (Tensor) – The embedding outputs to permute. Shape is (B_local, total_global_D), where B_local = a local batch size and total_global_D is the total embedding dimension across all features (global)

Returns:

Permuted embedding outputs (Tensor). Same shape as pooled_embs

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources