Pooled Embedding Modules¶
- class fbgemm_gpu.permute_pooled_embedding_modules.PermutePooledEmbeddings(embs_dims: List[int], permute: List[int], device: device | None = None)[source]¶
A module for permuting embedding outputs along the feature dimension
An embedding output tensor contains the embedding outputs for all features in a batch. It is represented in a 2D format, where the rows are the batch size dimension and the columns are the feature * embedding dimension. Permuting along the feature dimension is essentially permuting along the second dimension (dim 1).
Example:
>>> import torch >>> import fbgemm_gpu >>> from fbgemm_gpu.permute_pooled_embedding_modules import PermutePooledEmbeddings >>> >>> # Suppose batch size = 3 and there are 3 features >>> batch_size = 3 >>> >>> # Embedding dimensions for each feature >>> embs_dims = torch.tensor([4, 4, 8], dtype=torch.int64, device="cuda") >>> >>> # Permute list, i.e., move feature 2 to position 0, move feature 0 >>> # to position 1, so on >>> permute = [2, 0, 1] >>> >>> # Instantiate the module >>> perm = PermutePooledEmbeddings(embs_dims, permute) >>> >>> # Generate an example input >>> pooled_embs = torch.arange( >>> embs_dims.sum().item() * batch_size, >>> dtype=torch.float32, device="cuda" >>> ).reshape(batch_size, -1) >>> print(pooled_embs) >>> tensor([[ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15.], [16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31.], [32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47.]], device='cuda:0') >>> >>> # Invoke >>> perm(pooled_embs) >>> tensor([[ 8., 9., 10., 11., 12., 13., 14., 15., 0., 1., 2., 3., 4., 5., 6., 7.], [24., 25., 26., 27., 28., 29., 30., 31., 16., 17., 18., 19., 20., 21., 22., 23.], [40., 41., 42., 43., 44., 45., 46., 47., 32., 33., 34., 35., 36., 37., 38., 39.]], device='cuda:0')
- Parameters:
embs_dims (List[int]) – A list of embedding dimensions for all features. Length = the number of features
permute (List[int]) – A list that describes how each feature is permuted. permute[i] is to permute feature permute[i] to position i.
device (Optional[torch.device] = None) – The device to run this module on
- __call__(pooled_embs: Tensor) Tensor [source]¶
Performs pooled embedding output permutation along the feature dimension
- Parameters:
pooled_embs (Tensor) – The embedding outputs to permute. Shape is (B_local, total_global_D), where B_local = a local batch size and total_global_D is the total embedding dimension across all features (global)
- Returns:
Permuted embedding outputs (Tensor). Same shape as pooled_embs